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Abstract. This work explores the application of perturbation formalism, developed for isotropic velocity-
dependent potentials, to three-dimensional Schrödinger equations obtained using different orderings of the
Hamiltonian. It is found that the formalism is applicable to Schrödinger equations corresponding to three
possible ordering ambiguities. The validity of the derived expressions is verified by considering examples
admitting exact solutions. The perturbative results agree quite well with the exactly obtained ones.

PACS. 03.65.Ge Solutions of wave equations: bound states – 31.15.Md Perturbation theory

1 Introduction

In a recent work we considered the time-independent
Schrödinger equation for a constant mass moving in a
velocity-dependent potential [1]. Treating the velocity-
dependent potential as a small perturbation, we developed
formulae for the changes in the bound-state energy and
wave function of a quantum state. Unlike the standard
perturbation theory, the results show that determination
of the changes in the energy and wave function of a state
only requires knowledge of the unperturbed ground-state
wave function in addition to the perturbing potential.

The Schrödinger equation for a constant mass experi-
encing a velocity-dependent potential has the same form
as one of the equations that have been proposed to de-
scribe a particle endowed with a position-dependent effec-
tive mass m(r). The multiplicity of possible Schrödinger
equations stems from an ambiguity in constructing the ki-
netic energy term. This in turn is a direct consequence of
the non-commutativity of the spatially variable mass with
the momentum operator.

The most general kinetic energy term used to de-
scribe a position-dependent mass is that proposed by von
Roos [2],

TV R = − h̄
2

4

[

mδ(~r ) ∇ mβ(~r ) ∇ mγ(~r )

+mγ(~r ) ∇ mβ(~r ) ∇ mδ(~r )
]

, (1)

where the ambiguity parameters obey the constraint δ +
β + γ = −1. This ambiguity is relevant to many physical
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systems that have attracted much research activity. For
examples; impurities in crystals [3–5], dependence of nu-
clear forces on the relative velocity of the two nucleons [6,
7]. More recent works include the study of semiconductor
heterostructures [8,9].

Work has been done in order to single out a unique
set of values for the ambiguity parameters. For example
in [10] the case of a one-dimensional, position-dependent
effective mass m(x) was considered. It was suggested that
there is a privileged ordering namely δ = 0, β = −1,
which was achieved by demanding the continuity of the
term [m(x)]−1∂ψ/∂x at the point of discontinuity ofm(x).
However, another work [11] also addressed the problem of
abrupt heterojunctions and concluded that, for the gener-
alized kinetic energy operator given in eq. (1), the quan-
tities which are continuous are

m(x)δψ(x) and m(x)(δ+β) ∂ψ

∂x
, (2)

with the constraint 2δ + β = −1. Further, the formal-
ism of supersymmetric quantum mechanics and the no-
tion of shape invariant potentials were extended to the
Schrödinger equation for an effective position-dependent
mass [12]. The authors considered an equation constructed
using the set of parameters δ = 0, β = −1. However, a
more recent work [13] extended the supersymmetric for-
malism in such away that the ambiguity parameters were
all taken into account. The authors started from the gen-
eralized kinetic energy term in eq. (1).

Clearly, there is no one single set of values that is uni-
versally agreed for the ambiguity parameters. Nonethe-
less, some of the choices that have been found useful
for describing the motion of electrons in composition-
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ally graded crystals include those of BenDaniel and Duke
(BDD) [14] (δ = 0, β = −1), Zhu and Kroemer (ZK) [15]
(δ = − 1

2 , β = 0), Bastard [16] (δ = −1, β = 0) and the

redistributed model [17] (δ = 0, β = − 1
2 ).

In sect. 3 we shall explore the application of the per-
turbation formalism developed in [1] to different construc-
tions of the Schrödinger equation obtained using different
orderings. However, we shall start by giving a brief outline
of the perturbation formalism.

2 Brief summary of the perturbation

formalism

In [1] we considered an isotropic velocity-dependent po-
tential of the form [18],

∇ · f(r)∇ = f(r)∇2 +∇f(r) · ∇, (3)

where f(r) is an isotropic function of the radial variable r.
In the presence of the above velocity-dependent potential
the s-wave, time-independent Schrödinger equation for a
particle of constant massm0 and energy E moving in some
isotropic local potential U(r) may be expressed as

[−h̄2

2m0
{(1−f(r))∇2−∇f(r) · ∇}+U(r)

]

ψ(~r ) = Eψ(~r ).

(4)
Using the reduced wave function u(r) = rR(r) the above
equation takes the form

(1− f(r))u′′(r)−
[

u′(r)− u(r)

r

]

f ′(r) = [U(r)− E]u(r),

(5)
where the prime denotes a derivative with respect to r
and we have expressed E and U(r) in units of h̄2/2m0.
Following Bender in his perturbative approach for local
potentials [19], we considered the expansions

u(r) = u0(r) + λu1(r) + λ2u2(r) + . . . , (6)

E = E0 + λE1 + λ2E2 + . . . , (7)

and set
f(r) = λρ(r), (8)

with λ being a real expansion coefficient such that 0 ≤
λ ≤ 1. Switching off the perturbation corresponds to set-
ting λ = 0. Further, the unperturbed ground-state wave
function u0(r) and the corresponding energy E0 are as-
sumed known. In addition, u0(r) is normalized to unity.

Substituting eqs. (6) to (8) in (5) and equating coeffi-
cients of λn, for n ≥ 1, leads to the general expression

u′′nu0−u′′0un−u0
d

dr
(ρu′n−1)+

ρ′

r
u0un−1=−

n
∑

k=1

Eku0un−k.

(9)
Since we are dealing with bound states then un(0) =
un(∞) = 0 for all n. Integrating (9) over all r results

in the following energy and wave function corrections:

En = −
∫

∞

0

u′0 ρ u
′

n−1 dr −
∫

∞

0

ρ′

r
u0 un−1 dr, (10)

un = u0

∫ r

0

dr′

u2
0

∫ r′

0

{

u0
d

dr′′
(

ρu′n−1

)

− ρ′

r′′
u0un−1

−
n
∑

k=1

Eku0un−k

}

dr′′ + Cnu0. (11)

We determined the integration constants Cn by demand-
ing that each wave function correction un be orthogonal
to the ground-state wave function u0. Hence multiplying
the last equation by u0 and integrating over all r results in

Cn =

∫

∞

0

u2
0 dr

∫ r

0

dr′

u2
0

∫ r′

0

{

−u0
d

dr′′
(

ρu′n−1

)

+
ρ′

r′′
u0un−1 +

n
∑

k=1

Eku0un−k

}

dr′′. (12)

It is worth noting that the energy corrections not only
depend on the form of ρ(r) but also on its derivative with
respect to r. Further, the values of the energy corrections
are decoupled as a direct consequence of constructing un
to be orthogonal to u0.

The above formalism was applied to two simple exam-
ples admitting exact solutions. As will be seen in sect. 3.1,
the perturbative solutions agree quite well with the ex-
actly obtained ones. Although we considered the s-wave
case, the above expressions are valid for all values of the
orbital angular quantum number l when the appropriate
ground-state wave functions are used. The centrifugal bar-
rier term can be included in U(r) which does not appear
explicitly in the derived results.

3 Effect of different orderings on the

perturbative approach

From now on m ≡ m(r) denotes a position-dependent
effective mass, while m0 denotes a constant mass as
stated earlier. According to eq. (1) the most general, time-
independent, three-dimensional Schrödinger equation for
a position-dependent effective mass is

− h̄2

2m

{

∇2 − m′

m

d

dr
+ (δ + γ)

[

1

r

m′

m
+
m′′

2m
− m′2

m2

]

−δ γ m
′2

m2

}

ψ(~r ) + U(r)ψ(~r ) = Eψ(~r ), (13)

where we have used the condition δ + β + γ = −1. In
terms of the reduced wave function u(r) = rR(r), the
above equation may be presented in the form

− h̄2

2m

{

d2

dr2
−m

′

m

[

d

dr
− 1

r

]

+(δ+γ)

[

1

r

m′

m
+
m′′

2m
− m′2

m2

]

−δ γ m
′2

m2

}

u(r) + Ul(r)u(r) = Eu(r), (14)
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where Ul(r) = U(r) + l(l + 1)h̄2/2mr2 includes the cen-
trifugal barrier term.

In what follows we shall explore the application of
the perturbation formalism to Schrödinger equations con-
structed using different orderings. For simplicity, the s-
wave case will be considered. Further, throughout the cal-
culations U(r) and E are measured in units of h̄2/2m0.

3.1 δ = 0, β = −1

Using this set of the ambiguity parameters and making
the substitution

1

m
=

1− f(r)
m0

, (15)

eq. (14) takes the form

(1− f(r))u′′(r)−
[

u′(r)− u(r)

r

]

f ′(r) = [U(r)− E]u(r),

(16)
which coincides with the Schrödinger equation (5) that
describes a constant mass moving in a velocity-dependent
potential. As outlined in sect. 2, this equation was used to
derive the perturbation formulae for the energy and wave
function corrections given in (10) and (11). To test the
validity of the derived expressions, two examples admit-
ting exact solutions were considered [1]. In either case, the
local potential U(r) was assumed to have the simple form
of an infinite spherical well of radius 1. The first example
took ρ(r) to be constant inside the infinite well. This re-
sulted in a first-order perturbative solution that coincided
with the exact one. In the second example, however, we
considered a harmonic-like isotropic term ρ(r) = ρ0r

2. In-
side the spherical local well the corresponding exact wave
function is

u(r) =2 F1(a, b, c, ρ0r
2), (17)

which is a hypergeometric function. Upon evaluating for
a,b and c, we obtain

u(r) = D r

[

1− 1

6
E r2 +

1

120ρ0
E(E − 10ρ0) r

4

− 1

5040ρ2
0

E(E−10ρ0)(E−28ρ0) r
6 + . . .

]

. (18)

For a physical solution the above infinite series must be
terminated by setting one of the terms to zero. Choosing
E = 10ρ0 results in

u(r) = D r

(

1− 5

3
ρ0r

2

)

. (19)

The constant D can be determined by normalizing the
wave function, which must vanish at r = 1. This results in
ρ0 = 3/5, leading to an exact energy eigenvalue E = 6.0
in units of h̄2/2m0. Using the expressions for the derived
bound-state energy corrections given in eq. (10) we obtain

E1 = −3.4739, E2 = −0.2623, E3 = −0.0791. (20)

In the absence of the velocity-dependent potential, the
ground-state energy for an infinite well is E0 = π2. Conse-
quently, up to and including the third-order correction in
the perturbation the energy eigenvalue is E = 6.0543, in
good agreement with the exact value of 6.0. Clearly, the
absolute value of the energy corrections gets progressively
smaller. Therefore, addition of further corrections is
expected to bring the approximate and exact values even
closer.

3.2 δ = −1, β = 0

For this set of parameters, eq. (14) with the aid of (15)
turns into

(1−f(r))u′′(r)−f ′(r)u′(r)− f
′′(r)

2
u(r) = [U(r)− E]u(r).

(21)
Substituting eqs. (6) to (8) in the last expression and using
f(r) = λρ(r) leads to the following general equation for
the coefficients of λn:

d

dr
(u′nu0 − u′0un)− u0

d

dr
(ρ u′n−1)−

ρ′′

2
u0 un−1

+

n
∑

k=1

Eku0 un−k = 0, (22)

where n ≥ 1. By integrating the above equation over all
r we end up with the following expression for the bound-
state energy corrections:

En = −
∫

∞

0

u′0 ρ u
′

n−1 dr +
1

2

∫

∞

0

ρ′′ u0 un−1 dr. (23)

Further, integrating (22) from 0 to r leads to the corre-
sponding wave function corrections

un(r) = u0

∫ r

0

dr′

u2
0

∫ r′

0

{

u0
d

dr′′
(ρu′n−1)

+
ρ′′

2
u0 un−1 −

n
∑

k=1

Eku0 un−k

}

dr′′ + Cnu0, (24)

where

Cn =

∫

∞

0

u2
0 dr

∫ r

0

dr′

u2
0

∫ r′

0

{

−u0
d

dr′′
(

ρu′n−1

)

−ρ
′′

2
u0 un−1 +

n
∑

k=1

Eku0 un−k

}

dr′′. (25)

In order to test the validity of the above formulae we shall
assume the local potential to be an infinite spherical well
and ρ(r) = ρ0r

2 as before. Consequently, the exact solu-
tion of (21) takes the form

u(r) = D r

{

1 +
1

6
(−E + 3ρ0)r

2

+
1

120
(−E + 3ρ0)(−E + 13ρ0)r

4

+
1

5040
(−E+3ρ0)(−E+13ρ0)(−E+31ρ0)r

6+. . .

}

. (26)
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The choice E = 31ρ0 leads to

u(r) = D r

(

1− 14

3
ρ0 r

2 +
21

5
ρ2
0 r

4

)

. (27)

For the above solution to be physically acceptable it must
vanish at r = 1. This imposes the value

ρ0 =
1

63

(

35− 2
√
70
)

, (28)

leading to an exact energy of 8.9884 in units of h̄2/2m0.
Using the expressions for the derived energy corrections
in (10) we obtain

E1 = −0.8089, E2 = −0.0613. (29)

According to (7), up to and including the second-order
correction the energy eigenvalue is E = 8.9994 in quite
good agreement with the exact value. The absolute per-
centage error is only 0.1%.

3.3 δ = 0, β = −1/2

Proceeding in exactly the same manner as above, eq. (14)
reduces to

(1− f(r))u′′(r)− f ′(r)u′(r) + f ′(r)

2r
u(r)

−f
′′(r)

4
u(r) = (U(r)− E)u(r), (30)

and the equation for the coefficients of λn for n ≥ 1 reads

d

dr
(u′nu0 − u′0un)− u0

d

dr
(ρ u′n−1) +

ρ′

2r
u0 un−1

−ρ
′′

4
u0 un−1 +

n
∑

k=1

Ek u0 un−k = 0. (31)

Integrating the last equation form the origin to infinity
leads to the energy corrections

En = −
∫

∞

0

u′0 ρ u
′

n−1 dr −
∫

∞

0

ρ′

2r
u0 un−1 dr

+

∫

∞

0

ρ′′

4
u0 un−1 dr. (32)

However, integrating from the origin to r leads to the wave
function corrections

un = u0

∫ r

0

dr′

u2
0

∫ r′

0

{

u0
d

dr′′
(ρu′n−1)−

ρ′

2r′′
u0 un−1

+
ρ′′

4
u0 un−1 −

n
∑

k=1

Ek u0 un−k

}

dr′′ + Cn u0, (33)

where

Cn =

∫

∞

0

u2
0dr

∫ r

0

dr′

u2
0

∫ r′

0

{

−u0
d

dr′′
(ρu′n−1)

+
ρ′

2r′′
u0 un−1 −

ρ′′

4
u0 un−1 +

n
∑

k=1

Ek u0 un−k

}

dr′′ (34)

Taking the same form of the potentials as above, the ex-
act wave function obtained is a hypergeometric function,
which may be put in the form

u(r) = D r

{

1 +
1

12
(−2E + 3ρ0)r

2

+
1

480
(−2E + 3ρ0)(−2E + 23ρ0)r

4

+
1

40320
(−2E+3ρ0)(−2E+23ρ0)(−2E+59ρ0)r

6+. . .

}

.

(35)

To terminate the infinite series we choose E = 59ρ0/2,
which leads to a wave function of the same form as that
in (27). By demanding that the wave function be zero at
r = 1, the corresponding exact energy is 8.5535 in units
of h̄2/2m0. Using the results of the perturbative approach
given in (10) the energy corrections acquire the following
values:

E1 = −1.2438, E2 = −0.0613. (36)

Consequently, in units of h̄2/2m0 the energy up to and
including the second-order correction is 8.5645. The abso-
lute percentage error is only 0.1%. Clearly, the agreement
with the exact value is very satisfactory.

3.4 δ = −1/2, β = 0

Using this set of parameters, and (15) the most general
Schrödinger equation (14) reduces to

(1− f(r))u′′(r)− f ′(r)u′(r)− f ′(r)2

4(1− f(r))u(r)

−f
′′(r)

2
u(r) = (U(r)−E). (37)

The perturbative approach relies on expanding the wave
function and the energy in terms of the expansion pa-
rameter λ, then collecting coefficients of equal powers of
λ. Since f(r) = λρ(r), the term (1 − f(r))−1 in the last
equation renders this process invalid. Consequently, one
cannot apply the perturbative formalism in this case.

4 Conclusions

In a recent work, we considered the Schrödinger equation
for a constant mass moving in a velocity-dependent po-
tential. We developed expressions for the changes in the
bound-state energies and the corresponding changes in
the wave functions assuming the velocity-dependent po-
tential to be a small perturbing term [1]. In this work
we have explored the application of this perturbative ap-
proach to Schrödinger equations describing a particle en-
dowed with a position-dependent effective mass. The con-
sidered Schrödinger equations correspond to different or-
dering ambiguities.

For the ambiguity parameters proposed by BenDaniel
and Duke (δ = 0, β = −1), the Schrödinger equation
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for the spatially variable mass has the same form as
the Schrödinger equation for a constant mass moving in
a Kisslinger-type velocity-dependent potential given in
eq. (3). This is exactly the equation we used to derive
the perturbation formalism in [1]. To test the validity of
the perturbation expressions, examples admitting exact
solutions were considered. The local potential was taken
to have the form of a spherical infinite well of radius
r = 1. However, the isotropic term was assumed to have
harmonic-like behavior, namely ρ(r) = ρ0r

2. The value
ρ0 = 0.6 resulted in an exact energy E = 6.0 in units of
h̄2/2m0. Using the expression in (10), the energy correc-
tions were calculated to be E1 = −3.4739, E2 = −0.2623
and E3 = −0.0791. Consequently, up to and including the
third-order correction the energy eigenvalue is 6.0543 in
good agreement with the exact value.

For the set δ = −1, β = 0 proposed by Bastard, use of
the same forms of the potentials as above resulted in an
exact energy value of 8.9884 in units of h̄2/2m0. The en-
ergy corrections were determined to be E1 = −0.8089 and
E2 = −0.0613. Therefore, the energy up to and including
the second-order correction is 8.9994. The absolute per-
centage difference is only 0.1%.

According to the redistributed model the proposed val-
ues of the ambiguity parameters are δ = 0, β = −1/2. The
exact energy corresponding to the same forms of the po-
tentials as above is 8.5535 in units of h̄2/2m0. While use
of the perturbation expressions resulted in E1 = −1.2438
and E2 = −0.0613. This leads to an energy value of 8.5645
up to and including the second-order correction in good
agreement with the exact value.

Finally, Zhu and Kroemer proposed the values δ =
−1/2, β = 0, which, when substituted in (14), result in an
equation that has the term (1 − λρ(r)) in the denomina-
tor. The perturbation formalism relies on expanding the
energy and the corresponding wave function in powers of
λ and then collecting the coefficients of equal powers of λ.
The presence of (1 − λρ(r))−1 makes this procedure not
possible. Therefore, the perturbation formalism does not
apply in this case.

In conclusion, the application of the perturbative ap-
proach to three-dimensional Schrödinger equations that
describe a position-dependent effective mass has been ex-
plored. The equations were constructed using different or-
dering ambiguities proposed in the literature. It has been
shown that the perturbative approach is applicable to
Schrödinger equations corresponding to three ambiguity
orderings. A fourth set of ambiguity parameters results
in an equation for which the perturbation formalism does
not apply.

References

1. M.I. Jaghoub, Eur. Phys. J. A 27, 99 (2006).
2. O. von Roos, Phys. Rev. B 27, 7547 (1981).
3. J.M. Luttinger, W. Kohn, Phys. Rev. 97, 869 (1955).
4. G.H. Wannier, Phys. Rev. 52, 191 (1957).
5. J.C. Slater, Phys. Rev. 76, 1592 (1949).
6. O. Rojo, J.S. Levinger, Phys. Rev. 123, 2177 (1961).
7. M. Razavy, G. Field, J.S. Levinger, Phys. Rev. 125, 269

(1962).
8. G. Bastard, Wave Mechanics Applied to Semiconductor

Heterostructures (Les Editions de Physique, Les Ulis,
1992).

9. C. Weisbuch, B. Vinter, Quantum Semiconductor Het-

erostructures (Academic Press, New York, 1993).
10. J.M. Levy-Leblond, Phys. Rev. A 52, 1845 (1995).
11. R.A. Marrow, K.R. Brownstein, Phys. Rev. B 30, 678

(1984).
12. A.R. Plastino, A. Rigo, M. Casas, F. Garcias, A. Plastino,

Phys. Rev. A 60, 4318 (1999).
13. A. de Souza Dutra, M. Hott, C.A.S. Almeida, Europhys.

Lett. 62, 8 (2003).
14. D.J. BenDaniel, C.B. Duke, Phys. Rev B 152, 683 (1966).
15. Q.-G. Zhu, H. Kroemer, Phys. Rev. B 27, 3519 (1983).
16. G. Bastard, Phys. Rev. B 24, 5693 (1981).
17. T.L. Li, K.J. Kuhn, Phys. Rev. B 47, 12760 (1993).
18. L.S. Kisslinger, Phys. Rev. 98, 761 (1955).
19. C.M. Bender, Advanced Mathematical Methods for Scien-

tists and Engineers (New York, McGraw-Hill, 1978).


